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Summary
The development of new generation se-
quencing methods and the reduction 
in the cost per base sequenced over the 
past few years is drawing the attention 
of the pig industry to microbiome un-
derstanding and modulation. In recent 
years, there has been an increase in the 
number of articles published related 
to microbiome studies in swine. With 
respect to sows, microbiome studies 
mainly focused on the gut, with some 
studies evaluating the reproductive tract 
and mammary microbiome. However, 

studies about urinary microbiome are 
still lacking. The present literature indi-
cates that the microbiome in the sow’s 
gut can affect the microbiome in other 
body parts. Moreover, the understand-
ing of the dynamics and interactions 
among microbial populations within 
the sow or the herd has led to improve-
ments in animal health and reproduc-
tive performance. This review provides 
new insights related to sow intestinal, 
urinary, mammary, and reproductive 
microbiomes and their relationships 
with reproductive outcomes, diseases, 
and early colonization in offspring by 

gathering the most recent work in this 
field as well as pinpoints information 
gaps that require further investigation. 
This literature review also sheds light 
on the knowledge regarding the role of 
microbiomes in the reduction of antimi-
crobial use.
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Resumen - El microbioma de la cerda: 
Perspectivas actuales y futuras para 
maximizar la productividad en las pi-
aras porcinas

En los últimos años el desarrollo de mé-
todos de secuenciación de nueva gener-
ación y la reducción en el costo por base 
secuenciada está atrayendo la atención 
de la industria porcina hacia la compren-
sión y modulación del microbioma. En 
los últimos años, ha habido un aumento 
en el número de artículos publicados re-
lacionados con estudios del microbioma 
en cerdos. Con respecto a las cerdas, los 
estudios del microbioma se centraron 
principalmente en el intestino, con 

algunos estudios que evaluaron el tracto 
reproductivo y el microbioma mamario. 
Sin embargo, todavía faltan estudios 
sobre el microbioma urinario. La litera-
tura actual indica que el microbioma en 
el intestino de la cerda puede afectar el 
microbioma en otras partes del cuerpo. 
Además, la comprensión de la dinámica 
y las interacciones entre las poblaciones 
microbianas de la cerda o de la piara 
han llevado a mejoras en la salud ani-
mal y el rendimiento reproductivo. Esta 
revisión de los trabajos más recientes 
en esta área proporciona nueva infor-
mación relacionada con los microbiomas 
intestinales, urinarios, mamarios, y 

reproductivos de las cerdas, su relación 
con los resultados reproductivos, las en-
fermedades, y la colonización temprana 
de su progenie e indica también la falta 
de información que requiere mayor in-
vestigación. Esta revisión de la literatura 
también se expone el conocimiento del 
rol de los microbiomas en la reducción 
del uso de antimicrobianos.
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Productivity of the sow herd is tradi-
tionally measured by the number 
of pigs weaned1 or kilograms of 

piglets weaned per sow per year.2 Lon-
gevity is another factor that can impact 
herd productivity and is directly affected 
by disease.3 Antimicrobials are used 
in all production phases of pig produc-
tion; and with respect to the sow, they 
are more frequently used during the 
lactation phase.4 Reproductive failures 
and diseases frequently associated with 
polymicrobial organisms are tradition-
ally controlled with use of in-feed, broad-
spectrum antimicrobials.5,6 It is estimat-
ed that a sow will be treated with at least 
one active antimicrobial ingredient for 
an average 3.2 days/year,7 however this 
is often underestimated in treatment re-
cords.8 The category of antibiotics used  
in sows varies greatly between herds, 
but it was reported that 26% of all herds 
use antibiotics to treat sows.9 Rosengren 
et al10 reported an incidence of 7.84 sows 
treated with antibiotics per 1000 sows/day, 
while Sjölund et al11 reported an incidence 
of 42 sows treated with antibiotics per  
1000 sows/day. In some herds, all sows 
were routinely injected with an antimicro-
bial agent after farrowing.10 The major-
ity of antimicrobials used in swine herds 
are classified as critically important or 
highly important by the World Health Or-
ganization.12 Rosengren et al10 reported 
that some herds routinely use ceftiofur 
for treating sows. The use of third-gen-
eration cephalosporins has increased 
since 2001 and an increase in bacterial 
isolates from healthy swine showing 
extended-spectrum, beta-lactamases 
was observed in the same period.13 Ceft-
iofur is restricted to use in animals but 
is similar to ceftriaxone, which is widely 
used in human medicine. Therefore, 
ceftiofur should not be used as a first-
choice antimicrobial for sows.12 The use 

of antimicrobials in animal production 
is a public health matter, as it engenders 
selection pressure for resistance to an-
timicrobials. Of all swine, sows are the 
pigs least treated with antimicrobials.9,11 
Attention should be paid to antimicro-
bial administration to sows as they can 
act as a reservoir for transferal of resis-
tant bacteria to their offspring.4 Due to 
recent concerns about antimicrobial re-
sistance and the subsequent restrictions 
on the use of antimicrobials in animal 
production, researchers are looking for 
new alternatives to prevent and treat 
disease. One possible alternative relies 
on unveiling the mechanisms by which 
the microbiome interacts with the host 
and its relationship with health and 
productivity.14-16 

The microbiome is defined as a charac-
teristic microbial community occupying 
a well-defined habitat which has distinct 
physio-chemical properties and includes 
the whole spectrum of molecules pro-
duced by the microorganisms, their 
structural elements, metabolites, and 
molecules produced by the host and are 
influenced by the surrounding environ-
mental conditions. The microbiome is 
prone to change in time and scale and 
is essential for multicellular organism 
health.17,18 

Studies associating the microbiome with 
disease have been carried out in various 
species, including humans.16,19-23 Altera-
tions in vaginal and intestinal microbi-
omes can reduce urinary tract infections 
and gut infections in humans.19,24,25 This 
new knowledge opens possibilities for 
new studies to provide a better under-
standing about microbiome relation-
ships with diseases and reproductive 
performance. In sows, several factors 
may alter the microbiome composi-
tion. It was reported that antimicrobials 

used,26 reproductive stage,27 genetic 
line,28 feed additives, probiotic and pre-
biotic supplementation,29 pathogen ex-
posure, vaccines to prevent disease,23 
and stressful conditions30 can affect the 
microbiome. Some of these factors are 
being studied to increase sow produc-
tivity by microbiome modulation14,15,28 
alongside studies investigating the possi-
bility of modulating the offspring micro-
biome through sow microbiome modula-
tion.29,31,32 These factors are presented 
in Figure 1. 

In pigs, microbiome modulation can 
prevent disease and reduce the use of 
antimicrobials.33 Pathogen exposures 
can cause dysbiosis,23 which can result 
in an unstable microbiome and increase 
susceptibility to diseases caused by op-
portunistic organisms.34 Both factors 
contribute to development of disease in 
sows and impair productivity. Develop-
ment of a stable microbiome by admin-
istration of Lactobacillus to newborn 
piglets has been shown to reduce diar-
rhea and improve weaning weight.35,36 
Similarly, probiotic supplementation 
to weaned piglets had a positive effect 
on average daily gain and reduced di-
arrhea37-39 and Salmonella shedding.37 
Other studies in swine indicate interac-
tion between the microbiome and other 
areas of the body. It was observed that 
Enterococcus faecalis EC-12 increased the 
response of ex vivo tissue to immuno-
stimulants such as porcine reproductive 
and respiratory syndrome virus (PRRSV) 
modified live virus vaccine.40 A fecal mi-
crobiota transplant (FMT) had beneficial 
effects in pigs challenged against Myco-
plasma hyopneumoniae, reducing gross 
lung pathology.41

In sows, there is evidence that changes 
in the local microbiome (eg, intesti-
nal and vaginal microbiome) may have 
led to effects in different systems and, 

Résumé - Le microbiome de la truie: 
Perspectives actuelles et futures pour 
maximiser la productivité des trou-
peaux porcins

Le développement de méthodes de 
séquençage de nouvelle génération et la 
réduction du coût par base séquencée 
ces dernières années attirent l'attention 
de la filière porcine sur la compréhen-
sion et la modulation du microbiome. 
Au cours des dernières années, il y a eu 
une augmentation du nombre d'articles 
publiés liés aux études sur le microbi-
ome chez le porc. En ce qui concerne 
les truies, les études sur le microbiome 

se sont principalement concentrées sur 
l'intestin, certaines études évaluant 
l'appareil reproducteur et le microbi-
ome mammaire. Cependant, les études 
sur le microbiome urinaire font encore 
défaut. La littérature actuelle indique 
que le microbiome dans l'intestin de la 
truie peut affecter le microbiome dans 
d'autres parties du corps. De plus, la 
compréhension de la dynamique et des 
interactions entre les populations mi-
crobiennes au sein de la truie ou du trou-
peau a permis d'améliorer la santé et les 
performances de reproduction des ani-
maux. Cette revue fournit de nouvelles 

informations sur les microbiomes in-
testinaux, urinaires, mammaires, et re-
producteurs des truies et leurs relations 
avec les résultats de la reproduction, 
les maladies, et la colonisation précoce 
de la progéniture en rassemblant les 
travaux les plus récents dans ce domaine 
et en identifiant les lacunes en matière 
d'informations qui nécessitent une re-
cherche plus approfondie. Cette revue 
de la littérature met également en lu-
mière les connaissances concernant le 
rôle des microbiomes dans la réduction 
de l'utilisation des antimicrobiens.
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consequently, several biomarkers for 
productivity and optimal health were 
found.14,15,30 It was observed that symbi-
otic supplementation in sows improved 
their litter performance.42 It is pos-
sible to modulate the sow’s microbiome 
through microbiome transplantation, 
altering endometrial glands, circulating 
hormones, and improving reproductive 
efficiency.28,43 Research to date has fo-
cused mainly on piglet microbiomes, so 
there is a lack of information regarding 
the use of probiotics to prevent vaginal 
discharge, cystitis, mastitis, and diseas-
es that have a great economic impact in 
sow herds.

For decades, microbiology research has 
focused on culture methods or detec-
tion of individual microbial species or 
polycultures that may not represent the 
full bacterial population and diversity 
since most microorganisms could not be 
grown by traditional culture methods.44 
The seminal work of Woese and Fox45 in 
the 1970s using ribosomal RNA (rRNA) as 
a bacterial evolutionary marker, mainly 
with the 16S rRNA gene, revolutionized 
microbiology research. This and the de-
velopment of new generation sequencing 
(NGS) methods have made it possible to 
characterize the bacterial community 
in all its richness, diversity, and rela-
tive abundance, even in tissues believed 
to be sterile.46 Recently, technological 

advances have allowed a drastic reduc-
tion in sequencing costs, mainly due 
to the emergence of commercial high-
throughput sequencing platforms,47 
and research involving the assessment 
of the microbiome in swine has gained 
importance.

Despite the increase of microbiome 
analysis research, there is a lack of 
studies correlating the microbiome 
with its impact on sow productivity. 
Furthermore, studies that perform 
organism-based metabolic analysis, 
identify microbe-microbe interactions, 
and identify microbe-host interactions 
are even more scarce. The microbiome 
is complex, and studies focused on sys-
tem-based approaches would probably 
provide more valuable information.48,49 
Thus, this review aims to compile infor-
mation related to modifications or al-
terations in the microbiome to improve 
reproductive performance, as well as 
to point out topics that require further 
investigation.

The reproductive tract 
microbiome
The number of studies analyzing the vag-
inal microbiome of sows has increased, 
especially in the last four years.14,15,50-54 
Studies have focused on identifying 

possible biomarkers related to increased 
productivity,14 infectious diseases in tar-
get sites, ie, endometritis,16 and immune 
responses against systemic diseases, such 
as PRRS. The vaginal microbiome was 
also studied to identify possible biomark-
ers for diseases that have an ill-defined 
biological factor, such as prolapses.51

Endometritis has a major impact on 
the reproductive efficiency of sows55-58 
and its main cause is bacterial infec-
tion.59,60 Common clinical manifesta-
tions include purulent vulvar secretion, 
reproductive failure, abortion, anestrus, 
reduced farrowing rates, inappetence, 
and poor body condition which often 
leads to sow culling.60,61 This condition 
could also predispose the sow to other 
diseases such as postpartum dysgalactia 
syndrome (PDS) and cystitis.62,63 Vagi-
nal discharge is the reported reason for 
20.5% of culled sows, and endometritis 
was the most common postmortem le-
sion (14.5%) in sows culled due to anes-
trus and repeated breeding.61

The application of culture methods asso-
ciated with biomolecular techniques, no-
tably polymerase chain reaction (PCR), 
has identified several organisms in pu-
rulent vaginal discharge, such as Esch-
erichia coli, Staphylococcus, Streptococcus, 
Trueperella pyogenes,60,63 Arcobacter,64 

Figure 1: Factors that may influence the sow reproductive, urinary, and digestive tracts, colostrum, and milk microbiomes 
and, consequently, sow performance and the microbiome of their offspring.
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Chlamydia,65 Proteus, Pseudomonas, and 
Corynebacterium.63,66 The most common 
organism found was E coli, which was 
isolated in more than 30% of endometri-
tis cases.60 Despite the great potential of 
extraintestinal pathogenic E coli to cause 
metritis, it can also be part of the vagi-
nal microbiome in samples from healthy 
sows.16,52-54 The NGS-based studies have 
corroborated the importance of some of 
these organisms previously identified 
by traditional methods, such as E coli, 
Staphylococcus, and Streptococcus.16,52 
However, NGS metagenomic techniques 
allow the identification of microbes at 
a whole community level, in addition 
to allowing the comparison of relative 
abundances of each microbe type. This 
allows for greater resolution to identify 
organisms which are difficult to iden-
tify with traditional methods and may 
be important in dysbiosis such as low-
abundance or fastidious microbes (eg, 
Bacteroides, Clostridium, and Fusobacte-
rium) recently identified in metagenomic 
approaches as important pathogenic 
causes of endometritis.16,52,53

Previous studies demonstrated that the 
vaginal microbiome may act as biologi-
cal barrier by secreting antimicrobial 
components such as lactic acid, bacterio-
cin, and hydrogen peroxide to maintain 
the health of the reproductive tract.67,68 
Therefore, a sow’s vaginal microbiome 
is complex and even potentially patho-
genic bacteria can be part of the commu-
nity, suggesting that urogenital diseases 
may arise from dysbiosis.

Wang et al16 analyzed sow vaginal sam-
ples classified as either affected or not 
affected by endometritis. The Firmicutes 
phylum was the most abundant (40%-
60%) in the vaginal microbiome followed 
by Proteobacteria (20%-32%) and Bac-
teroidetes (9%-13%). However, the Fir-
micutes phylum had the greatest relative 
abundance in healthy sows, while Pro-
teobacteria and Bacteroidetes were more 
abundant in samples of sows affected by 
endometritis. At the genus level, Wang 
et al16 found that Bacillus and Paeniba-
cillus were relatively more abundant 
in the healthy sows, while Escherichia-
Shigella and Bacteroides were relatively 
more abundant in sows affected by en-
dometritis. Wang et al16 observed that 
one sow with endometritis had a great 
abundance of Staphylococcus during the 
metagenomic analysis, although the mi-
crobial species within the Staphylococcus 
genus was not classified. Experimental 
inoculation with Staphylococcus hyicus 
caused endometritis in sows in a previ-
ous study, as did E coli.59 

Similarly to Wang et al16, Zhang et al52 
found that sows with endometritis had 
a higher relative abundance of Por-
phyromonas, Clostridium sensu stricto 1, 
Streptococcus, Fusobacterium, Actinobacil-
lus, and Bacteroides in the birth canal. 
Escherichia-Shigella and Bacteroides were 
higher in the intestines of sows suffer-
ing from endometritis, suggesting a link 
between the onset of endometritis and 
the increase of these organisms in intes-
tinal microbiota. Xu et al53 also found 
the phyla Proteobacteria, Firmicutes, 
and Bacteroidetes among the most abun-
dant in sow vaginal samples; at the genus 
level, the most abundant were Escherichia, 
Streptococcus, Enterococcus, Bacillus, Clos-
tridium sensu stricto 1, Staphylococcus, 
Acinetobacter, Lactobacillus, and Proteus. 
Although Escherichia-Shigella, Clostridium 
sensu stricto 1, and Streptococcus relative 
abundance were related to endometritis 
in the other studies,16,52 no sow had endo-
metritis in the Xu et al53 study. However, 
the small number of females evaluated in 
these two studies (n = 8) precludes stron-
ger conclusions.

Furthermore, Xu et al53 showed that the 
addition of lysozyme, an antimicrobial 
enzyme that occurs naturally in the mu-
cosal barrier of mammals, to the diet 
of sows affected the vaginal bacterial 
community by decreasing the relative 
abundance of Escherichia-Shigella and 
increasing Lactobacillus. Members of the 
Lactobacillaceae family are most abun-
dant in the birth canal of healthy women 
and are considered protective against 
infection by other organisms and pro-
biotic candidates.69 The metagenomic 
studies related to the vaginal microbi-
ome did not observe a higher prevalence 
of Lactobacillus in healthy sows16,52 and 
that even healthy sows carried a higher 
prevalence of potential pathogenic or 
opportunistic organisms.16,52 These re-
sults indicate that the sow vaginal micro-
biome is more complex than what is ob-
served in humans, which contributes to 
the difficulty of describing a core vaginal 
microbiome in sows since even discrete 
changes can impair sow health. There-
fore, these authors suggested lysozyme 
as a candidate for the maintenance of a 
beneficial vaginal microbiome and con-
sequently reduce the necessity of anti-
microbial use to prevent or treat vaginal 
discharge in the sow herd. Further stud-
ies should elucidate the ability of lyso-
zyme to modulate the sow vaginal micro-
biome for only beneficial microbes.

Sanglard et al14 evaluated the vaginal 
microbiome of sows with low and high 
reproductive performance after PRRSV 

vaccination. Sows with low reproductive 
performance had a higher abundance 
of noxious bacteria such as Phascolarc-
tobacterium, Filifactor, Treponema, and 
Bacteroides compared to sows with high 
reproductive performance. Phascolarcto-
bacterium was negatively correlated with 
litter weight at day 21 of lactation27 and 
Filifactor has been associated with metri-
tis in dairy cows.70 In addition, discrimi-
nant linear analysis using the specific 
genera Campylobacter, Bacteroides, Por-
phyromonas, unclassified Lachnospirace-
ae, Prevotella, and Phascolarctobacterium 
was able to differentiate animals with 
high and low farrowing performance, 
indicating that these could serve as po-
tential biomarkers.14 Understanding 
the vaginal microbiome and potential 
biomarkers of high reproductive perfor-
mance may guide improvements in ge-
netic selection at an early age, even prior 
to breeding. Sanglard et al14 verified that 
this method is minimally invasive and 
can be performed at early ages, such as  
4 and 52 days after PRRSV vaccination 
(132 ± 12 days of age).

Another study50 investigated the rela-
tionship between the vaginal microbi-
ome and sow genetics and the impact on 
immune response and farrowing traits 
in commercial gilts. It was found that 
the genotype was able to explain up to 
33% of the immune response variation 
to vaccination and 14% of the total mi-
crobial variation of the vaginal microbi-
ome. The results indicated that the mi-
crobiome can be modulated by genetic 
selection for beneficial microbes, which 
may indirectly improve reproductive 
performance, and the possibility to ge-
netically select sows for a better immune 
response.50

The diversity of the vaginal microbiome 
has been discussed in recent years. La-
guardia-Nascimento et al71 found great 
variability in the vaginal microbiome of 
cows, which contradicted previous stud-
ies that used culture methods. Sanglard 
et al14 found that the microbiome of sows 
with low reproductive performance had 
greater vaginal microbial diversity com-
pared to sows with high reproductive 
performance.

Another factor that contributes to im-
paired herd productivity is pelvic organ 
prolapse. Prolapses are more prevalent 
during late gestation and early lacta-
tion and contributes to approximately 
21% of sow mortalities annually.51,72 
Sow mortality during the peripartum 
period is economically critical because 
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it increases nonproductive days and 
impairs neonatal nutrition. Despite the 
great impact of prolapses, prevention is 
in part neglected due to an ill-defined 
biological factor. Kiefer et al51 observed 
that alpha diversity revealed no sig-
nificant differences between samples 
for species richness, community even-
ness, and diversity. But when analyzed 
with linear discriminant analysis, there 
was abundant differences in 89 total 
operational taxonomic units between 
sows with high and low prolapse risk. 
A higher abundance of Prevotellaceae, 
Treponema, and Streptococcus dysgalactiae 
was observed in high prolapse risk sows. 
However, principal coordinate analyses 
revealed no distinct clustering of sows 
with high or low prolapse risk and the 
putative markers identified in this work 
will require determination of causality.49 
While the Sanglard et al,14,50 Wang et 
al,16 Kiefer et al,51 Zhang et al,52 and Xu 
et al53 studies were not designed to de-
scribe a core vaginal microbiome com-
munity associated with better reproduc-
tive outcomes in sows, they do show that 
some changes in bacterial composition 
may influence a sow’s disease response 
and reproductive performance. Further 
studies focusing on system-based ap-
proaches are required to understand the 
role of the microbiome in reproductive 
performance. 

The urinary tract 
microbiome
Urinary tract infections (UTIs) have 
great prevalence in swine herds and 
cause economic losses due to reproduc-
tive failures, increased sow culling, and 
mortality.73,74 It was reported that more 
than 90% of sows with some reproduc-
tive disorder also were diagnosed with a 
UTI.75 Additionally, UTIs during gesta-
tion are reported to reduce litter size by 
0.6 piglets/litter.76 Sows diagnosed with a 
UTI had 3.5 times higher risk of develop-
ing endometritis compared with healthy 
animals.63 Furthermore, UTIs are asso-
ciated with other diseases, such as mas-
titis metritis agalactia.77-79 

The UTI etiology is complex, polymi-
crobial, and may feature rotation or 
changes in etiological pathogens. Among 
the possible organisms, E coli was the 
predominant microbiological organ-
isms isolated in single (71%) and mixed 
(85%) UTIs in sows.80 For a long period, 
the urine within the urinary tract was 
generally considered sterile.81,82 This 
was due to insensitive identification for 

most bacterial species using traditional 
microbiological cultures.83-87 However, a 
growing list of studies using DNA meth-
ods (PCR, NGS, and genome sequencing) 
detected a wide range of microbiological 
species in urine samples from diseased 
and healthy humans and animals.22,84 
Furthermore, it was observed that not 
only was DNA present, but that the bac-
terial strains were viable.86 Therefore, 
the urinary bladder has an active and 
functional microbiome and may affect 
the onset of a UTI. The microbiome role 
in UTIs was demonstrated by a study in 
humans that administered Lactobacillus 
crispatus in vaginal suppositories after 
completion of a full course of antibiotic 
therapy, which reduced the recurrence 
of UTIs by 50% in UTI-prone women.19 

This is of particular importance in pigs 
because UTIs are prevalent in swine 
herds, and are usually treated with 
in-feed, broad-spectrum antimicrobi-
als.88,89 Another alternative for reduc-
ing the prevalence of UTIs, and conse-
quently antibiotic use, is the use of urine 
acidifiers in the diet. The use of acidi-
fiers affects the acid-base balance of the 
sow diet and is correlated with urinary 
pH and reduced total bacteria colony- 
forming units in the urine.90 Similar re-
sults were found in a mouse model with 
the reduction of uropathogenic E coli.91 
Kluge et al92 showed that supplemen-
tation with 1% benzoic acid in the diet 
reduced the urinary pH of sows by up to 
one unit when compared to the nonsup-
plemented group.

Few studies in animal science have ana-
lyzed the urinary tract microbiome. One 
study using dogs as a model identified a 
urinary tract microbiome in these ani-
mals.22 There seems to be a relationship 
between vaginal and urinary tract mi-
crobiomes in animals and humans.19,22 
Similarly, a positive correlation between 
UTI and endometritis was observed in 
pigs.63,75 Overlap between vaginal and 
urinary microbiota exists in dogs and 
humans, but more research is needed to 
determine if this overlap also exists in 
sows.19,22

However, there are no studies to our 
knowledge that have evaluated the uri-
nary tract microbiome in sows and its 
relationship with the use of nutritional 
management strategies (eg, probiotics 
and acidifiers). Nevertheless, Xu et al53 
observed that lysozyme administration 
in sow feed altered vaginal microbiota. 
Other literature indicates that nutrition-
al changes led to a reduction in urinary 
pH and a reduction in some potential 

pathogens in sow urine.90,92 If gut mi-
crobiome can be modulated to prevent 
dysbiosis, perhaps similar strategies can 
be used to prevent or even treat UTIs and 
consequently reduce the use of antibi-
otics. However, further investigation is 
necessary to understand the microbiome 
role in the sow bladder during cystitis 
and to develop new technologies and 
strategies to modulate the microbiome, 
minimizing dysbiosis and diseases.

Colostrum and milk 
microbiomes
Besides their nutritional value, colos-
trum and milk are essential to stimu-
late immune system development of 
piglets.32,93-95 Postpartum dysgalactia 
syndrome is commonly associated with 
infectious pathogens and is classified as 
having a multifactorial etiology. Postpar-
tum dysgalactia syndrome compromises 
milk production and is triggered by as-
sociations between risk factors such as 
management, feeding, and hygiene.77-79

It was observed that a lack of sufficient 
milk production resulted in an increase 
in piglet preweaning mortality, espe-
cially during the first week of age where 
mortality can be up to 38.6%.79,96 The in-
fection of mammary glands may lead to 
their lack of function and impairment of 
pregnancy rate.79 Mastitis has a complex 
treatment and, consequently, it was ob-
served that a high percentage (23%-33%) 
of antimicrobials used were classified as 
highest priority or critically important 
for human medicine by the World Health 
Organization.12,97 Moreover, Jenny et al97 
showed that for antibiotic treatment  of 
sow mastitis, duration was shorter and 
dosage was lower than recommended in 
54% and 19%, respectively, which can in-
fluence antibiotic resistance selection.96 
Based on the negative impact of PDS on 
reproductive performance and antimi-
crobial resistance, alternative tools are 
essential to reduce the occurrence of 
this syndrome.

The origin of colostrum and milk micro-
biomes is complex and not fully elucidat-
ed.98 The high percentage of anaerobic 
intestinal microorganisms in milk sam-
ples indicates that part of the milk bacte-
rial community originates from the ma-
ternal gastrointestinal tract through the 
bacterial entero-mammary pathway99 or  
ascending colonization of the udder via 
the teat canal (galactogenic route).77,78,100 
Other studies indicate that the skin may 
also be a source for the colostrum and 
milk microbiome.101,102 Bacteriological 

Journal of Swine Health and Production — July and August 2022242



analysis of colostrum and samples from 
mammary gland skin from healthy sows 
showed that all skin samples were bac-
teriologically positive with Staphylococ-
caceae as the most frequently isolated 
(96.9%) followed by Streptococcaceae 
(63.5%). In addition, 66.7% of all skin 
samples had species from the Entero-
bacteriaceae family, with E coli the 
dominant species. Similarly, 79.2% of co-
lostrum samples were bacteriologically 
positive with Staphylococcaceae as the 
most frequently isolated (54.1%) followed 
by Streptococcaceae (30.3%) and Entero-
bacteriaceae (3.9%). Again, E coli was the 
dominant species among the Enterobac-
teriaceae family.102

Despite not fully understanding the 
makeup of the mammary gland mi-
crobiome, it was observed that sow 
milk contained Enterobacteriaceae102 

and anaerobic gut-associated genera 
such as Bacteroides, Blautia, Rumino-
coccus, and Bifidobacterium indicating 
that the gut has an essential role in the 
mammary microbiome composition.95 
Gerjets et al103 studied the virulence 
genes most frequently detected in milk 
samples from healthy sows and sows 
with coliform mastitis. Although sows 
with coliform mastitis had significantly 
more specific virulence genes in their 
samples, healthy sows showed frequen-
cies close to and even higher of some 
virulence coding genes.103 Furthermore, 
no pattern was found in the virulence 
profile comparing sick and healthy ani-
mals.103 These findings raise the ques-
tion whether the presence of virulence 
genes alone is sufficient for bacteria to 
cause disease. There is no doubt that 
virulence genes are determinant for 
bacteria to attach, invade, and colonize 
the host resulting in illness.104 However, 
it also indicates that there is a complex 
interaction among pathogenic and op-
portunistic organisms, the environment, 
and animal genetics. The disruption of 
one of these factors by stressful han-
dling, mixing of animals from different 
origins, or the entry of a new infectious 
pathogen in the naive herd can affect the 
microbiome allowing the multiplication 
of pathogenic bacteria causing dysbiosis 
and disease.

Chen et al95 analyzed the bacterial 16S 
rRNA gene sequences from sow colos-
trum and milk, and the predominant 
phyla were Firmicutes and Proteobacte-
ria with a counter-balanced relationship 
between them. The relative abundance 
of these two phyla significantly fluctu-
ated throughout lactation, while total 

proportions between them remained 
at a certain level (75.9%-80.9%).95 The 
predominant genera observed during a 
microbiome assay was different between 
sow colostrum and milk. The most pre-
dominant genus in the colostrum was 
Streptococcus, while transitional and 
mature milk samples were dominated 
by unclassified Ruminococcaceae, Bifi-
dobacterium, Staphylococcus, and Acineto-
bacter, which are lactose-utilizing gen-
era.95 The six most predominant genera 
in sows’ milk were Ruminococcaceae, 
Streptococcus, unclassified Clostridiales, 
Lactobacillus, Corynebacterium, and un-
classified Lachnospiraceae.95 Analysis 
from bacteriological isolation102 and 16S 
rRNA sequences95 indicates that Staphy-
lococcus and Streptococcus are generally 
the predominant genera in sow colos-
trum and milk. Moreover, it was report-
ed that microbiome changes in the mam-
mary gland can be the cause for some 
nutritional alterations from colostrum to 
transitional and mature milk.95 

It was observed that microbiome in 
the gut is related to diseases in other 
organs41,53 and a probiotic/prebiotic 
or symbiotic supplementation may 
reduce the shedding of potential op-
portunistic organisms.37,53 The bacte-
rial entero-mammary pathway is being 
established99 and this interconnection 
indicates that gut microbiome modu-
lation may affect colostrum and milk 
microbiome composition. In this con-
text, lysozyme feed supplementation 
altered fecal microbiome and decreased 
some proinflammatory and increased 
anti-inflammatory cytokines. These in-
flammatory cytokines may play a role 
in PDS development.105 Based on this, 
the mammary gland microbiome and 
its interaction with the gastrointestinal 
microbiome would constitute an alterna-
tive strategy to prevent mammary dis-
orders through gut microbiome modula-
tion and consequently reduce the use of 
antimicrobials to treat mastitis. Another 
possibility to reduce the occurrence of 
mastitis is the development of probiotics 
for topical application to the sow udder 
to exclude opportunistic organisms from 
colonizing the mammary gland. Similar 
strategies using probiotics in the form 
of biofilm, spray, or intramammary in-
oculation to prevent mastitis have been 
developed and have shown promising 
results in vitro106 and in dairy cows.107,108 

Furthermore, formulations to be applied 
in sows should also be beneficial to pig-
let gut health.

Finally, the sow colostrum and milk 
microbiome can also influence piglet 
gut development and innate immune 
response. The maternal milk micro-
biome is primarily responsible for the 
colonization of the piglet gut contribut-
ing approximately 90% of the bacteria 
throughout the first 35 days of life.32 Lac-
tobacillus reuteri, Lactobacillus mucosae, 
and Akkermansia muciniphila are present 
in sow milk and can act as potential pro-
biotic bacteria.109,110 An increase of these 
organisms in the milk was observed dur-
ing the lactation period.95 Conversely, 
potentially pathogenic bacteria such as 
Staphylococcus epidermidis, Helcococcus, 
Corynebacterium, Actinobacillus, and Hae-
mophilus are also present in sow milk, 
but these organisms generally decreased 
during lactation in healthy sows.95,111,112 
The Helcococcus genus was negatively 
correlated with the abundance of the 
most bacteria genera in sow milk95 and 
its increase in the milk may affect sow 
and piglet health. 

Further studies exploring the sow milk 
microbiome are necessary to determine 
a microbial core. More research is also 
needed to evaluate the influence of en-
vironmental characteristics and the gut 
microbiome on the colostrum and milk 
microbiome and the subsequent impacts 
on the offspring.

Fecal microbiome and 
reproduction
The increased number of piglets born 
with lower birth weights and the greater 
within-litter weight variation leads to 
concerns about the ability of the sow to 
satisfactorily raise the piglets until wean-
ing. In recent years, numerous studies 
were developed to understand the impact 
of the sow gut microbiome and the effects 
of microbiome modulation on offspring 
performance. Moreover, the gut micro-
biome has being studied to find possible 
biomarkers for productivity, and studies 
related to FMT were conducted to observe 
the impact of microbiome of different ge-
netic lines on productivity.

The colonization of the piglet gut is initi-
ated during the farrowing process and 
immediately after birth. This early colo-
nization plays a crucial role in intestinal 
maturation. The developmental process 
of the intestinal microbiome is similar 
for humans and most animals.113 The 
earliest colonizers in the gut are faculta-
tive anaerobes, which are responsible 
for the creation of a favorable environ-
ment for anaerobe establishment.114,115 
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Chen et al115 demonstrated that the core 
microbiome of piglet feces in the first 
days post partum is determined by sur-
rounding environmental factors such 
as floor microorganisms and the micro-
biomes of the sow’s vagina, teats, mam-
mary secretions (colostrum and milk), 
and feces. Also, several studies dem-
onstrated that the process of immune 
maturation is influenced by the micro-
biome that colonizes the gut during the 
early stage of life.116,117 The piglet gut 
microbiome is influenced by milk oligo-
saccharides (MOS). The MOS decrease 
intestinal pH and increase cecal and co-
lonic butyrate in the piglet gut and have 
prebiotic activity, anti-adhesion effects, 
and anti-inflammatory properties. These 
characteristics stimulate the growth of 
beneficial microbes and inhibit possible 
pathogens.118,119 It was observed that 
sows fed with chitooligosaccharide sup-
plement had altered MOS with increas-
ing trisaccharide and tetrasaccharide, 
but the impact on the piglet gut micro-
biome was not evaluated.119 Although a 
plethora of preweaning and postwean-
ing factors (eg, tail docking, teeth clip-
ping, antibiotic treatment, weaning- 
associated stressors, and diet composi-
tion) may affect the gut microbiome of 
piglets, a maternal influence on the pig-
let microbiome was observed for up to  
63 days of age.120

Dysbiosis in the intestinal microbiome 
may increase gut permeability and plas-
ma endotoxin concentrations leading 
to sow metabolic disorders and exacer-
bated inflammatory status during early 
lactation.121 Wang et al27 found that dif-
ferences in the intestinal microbiome of 
sows resulted from oxidative stress dur-
ing the peripartum period. The authors 
observed that the relative abundance of 
Bacteroides was correlated to a reduced 
dam oxidative stress status and higher 
litter weight on day 21 of lactation. In 
contrast, Phascolarctobacterium and 
Streptococcus were associated with in-
creased oxidative stress and lower litter 
weight at 21 days post partum.27

In highly productive sows, the gut mi-
crobiome at 3 days before farrowing was 
mainly enriched in genera belonging to 
the Prevotellaceae and Ruminococca-
ceae families and a relative abundance 
of gram-negative bacteria in comparison 
to sows classified with low productiv-
ity.4 Sows classified as high performing 
during gestation15,122 and lactation27 had 
lower microbiome diversity. Uryu et al15 

also identified that sows with high repro-
ductive performance had an increase in 

the relative abundances of 43 bacterial 
genera, markedly the short-chain fatty 
acid (SCFA)-producing bacteria.

One important factor to evaluate during 
gut microbiome manipulation is SCFA 
production. The SCFAs play a role in 
sow metabolism, immune regulation, 
and gut homeostasis31,122-124 and act as 
precursor of colostrum and milk fat.125 
Moreover, the SCFA-producing bacteria 
were negatively correlated with porcine 
epidemic diarrhea virus infection23 and 
heat stress.30 Brutsaert126 indicates that 
feeding the sow with a nutritional addi-
tive (phenolic compound, slow release 
C12, target release butyrate, medium-
chain fatty acids, and organic acids) has 
the potential to stabilize the sow gut mi-
crobiome during parturition, increase 
feed intake, and increase the proportion 
of females that produce heavier piglets 
at weaning.

The fermentation of dietary fiber, nota-
bly soluble fiber, by the hindgut microbi-
ome leads to high production of SCFA124 
and improves piglet development,127 
reduces pathogenic bacteria in the 
gut,123,124 reduces digesta transit time, 
and may prevent colonization by oppor-
tunistic organisms and lipopolysaccha-
ride absorption.128 According to Jiang et 
al,43 sows that received a diet with 7.5% 
crude fiber throughout the reproductive 
cycle, as compared to sows that received 
2.5%, had an increased litter size (3.57 
piglets/litter), increased proportion of 
genera considered beneficial to the in-
testinal microbiome (Ruminococcus, Bu-
tyrivibrio, Lactobacillus, and Fibrobacter), 
and decreased potentially pathogenic 
genera such as Clostridium, Streptococ-
cus, Bacteroides, and Escherichia-Shigella. 
When the level of dietary fiber was the 
same, a higher soluble fiber vs insoluble 
fiber inclusion improved enzymes with 
antioxidant capacity and decreased 
proinflammatory factors in the sows 
and their offspring.129 The authors also 
reported that soluble fiber in sow diets 
increased the proportion of Romboutsia, 
Sediminibacterium, Bifidobacterium, un-
identified Lachnospiraceae, unidentified 
Ruminococcaceae, Subdoligranulum, 
Bacillus, Blautia, Bacteroides, and Para-
bacteroides and reduced the proportion 
of Acinetobacter, Vagococcus, and Strepto-
coccus in sow feces and piglet colons.129 
The microbial organisms reduced in 
the piglet colon were already character-
ized as opportunistic organisms.130-132 
Similarly, Cheng et al133 observed that 
increasing soluble fiber to 2% in the sow 
gestation diet resulted in piglets with 

greater growth rate and lower diarrhea 
rate during the lactation period. Fur-
thermore, the inclusion of dietary fiber 
in sow diets may contribute to main-
tenance of proper satiety throughout 
gestation,134 reduced constipation,128 
decreased farrowing duration,127 and re-
duced stillbirth rate.125

Supplementing the diet with functional 
foods capable of altering the intestinal 
microbiome has also been an area of 
research in recent years. Hasan et al29 
showed that the supplementation of 
yeast hydrolysate in sow diets changed 
the composition of the fecal microbi-
ome of pregnant sows at the phylum 
level, reduced farrowing duration, and 
increased colostrum production, which 
resulted in a 13% increase in colostrum 
consumption by piglets. In addition, a 
lower relative abundance of the phy-
lum Proteobacteria was observed in the 
supplemented group, which can be con-
sidered beneficial since the increased 
prevalence of this phylum is a marker of 
dysbiosis associated with intestinal dis-
eases and inflammation.

It is well established that nutrition dur-
ing the rearing period may affect the 
performance of future gilts135 but there 
is a lack of information regarding the gut 
microbiome role in this aspect. Emerg-
ing evidence in rats suggests that the 
gut microbiome may affect reproductive 
function since estrogens interact with 
the commensal microbiome through 
the estrogen-gut microbiome axis.136,137 
Wang et al138 observed that the gut of 
gilts showing failure to enter estrus be-
fore 210 days of age was enriched with 
Ruminococcacea, Lachnospiraceae, Ru-
minococcus, Coprococcus, and Oscillospira. 
In contrast, gilts showing a normal heat 
cycle had higher abundance of Prevotel-
la, Treponema, Faecalibacterium, Oribacte-
rium, Succinivibrio, and Anaerovibrio. In 
the same study, the authors found that 
the abundance of both Sphaerochaeta and 
Treponema was associated with specific 
periods of the estrus cycle in which es-
trogen is high (estrus and proestrous).

Some studies showed that most of 
the afore mentioned genera may be 
increased in the gut microbiome of 
sows and gilts by including fiber in the 
diet.123,133 The high inclusion of fiber, 
predominantly soluble (50% beet pulp), 
between the 1st and 19th day of the 3rd 
post-puberty estrous cycle resulted in 
improved oocyte quality and embryo 
development in vitro and in vivo.139,140 
Also, the inclusion of 350 g/kg of lupine 
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(rich in insoluble fiber and a moderate 
amount of soluble fiber) in the diet of 
prepubertal gilts improved oocyte qual-
ity and embryonic survival at 28 days of 
age. Moreover, a recent study showed 
that highly prolific Meishan sows have 
increased fecal microbiome diversity 
and levels of fecal steroid hormones (es-
tradiol and progesterone) than less pro-
lific sows, which may contribute to the 
improvement of sow reproductive per-
formance.29 Xu et al141 observed that the 
gut of sows with a short wean-to-estrus 
interval had lower Prevotella and Bac-
teroides at the genus level, whereas Fir-
micutes and Lentisphaerae are greater at 
the phylum level.

The uterus of Meishan gilts secrete more 
endometrial proteins than the uterus of 
white crossbred gilts and that the secre-
tion of endometrial proteins is positively 
correlated with endometrial gland de-
velopment before 60 days of age. Xu et 
al28 designed a study to evaluate the role 
of the gut microbiome on endometrial 
gland development through an FMT 
from Meishan to Landrace × Yorkshire 
gilts from 90 days of age until puberty. 
Fecal microbiome transplantation ex-
plained 60.49% of the variation in gut 
microbiome and increased concentra-
tions of SCFAs, endometrial gland area, 
insulin-like growth factor 1 (IGF-1) con-
centration in plasma and uterine tissue, 
and mRNA expression level of estrogen 
receptor 1 gene in ovary tissue. The au-
thors also observed that Lentisphaerae, 
Bifidobacterium, and Fibrobacter were 
positively correlated with endometrial 
gland area; Bacteroidetes was negatively 
correlated with estradiol and IGF-1 con-
centration; Firmicutes and Fibrobacter 
were positively correlated with estradiol 
concentration; and Bacteroidetes was 
positively correlated with progesterone 
concentration while Fibrobacteres, Fir-
micutes, Bifidobacterium, and Fibrobacter 
were negatively correlated. 

Conclusion and future 
approaches
The microbiome composition is very 
sensitive and influenced by diverse envi-
ronmental, management, and nutrition-
al events. Recent studies indicate that in 
some cases correlations are insufficient 
to understand the microbiome complex-
ity. The productivity of offspring may 
also be affected by sow microbiome 
modulation. Sow microbiome modula-
tion with probiotics, prebiotics, symbiot-
ics, or other feed additives or nutritional 

management may constitute a new tool 
to increase productivity and reduce dis-
ease in swine herds and consequently re-
duce antimicrobial use. Some biomark-
ers for productivity and disease have 
been identified, but further investigation 
using different herds are necessary to 
determine causality and repeatability 
of these findings. Future studies should 
focus on system biology approaches to 
understand the microbial-microbial and 
microbial-sow interactions as well as the 
effect of microbial metabolic production 
on reproductive outcomes and disease. 
Randomized blinded clinical trials are 
necessary to determine if it is possible 
to increase or decrease target microbial 
genera previously identified as biomark-
ers in metagenomics studies and their 
impact on reproductive outcomes and 
disease. The decrease in cost per base 
sequenced over the past few years is en-
couraging further research in this area. 
With an increase in metagenomics stud-
ies, future research may be aimed at the 
development of more specific and useful 
commercial products and to guide future 
genetic selections.
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